
INJECTIVE COLORINGS OF GRAPHS WITH LOW AVERAGE DEGREE

DANIEL W. CRANSTON∗, SEOG-JIN KIM†, AND GEXIN YU‡

Abstract. Let mad(G) denote the maximum average degree (over all subgraphs) of G and let

χi(G) denote the injective chromatic number of G. We prove that if ∆ ≥ 4 and mad(G) < 14
5 , then

χi(G) ≤ ∆+ 2. When ∆ = 3, we show that mad(G) < 36
13 implies χi(G) ≤ 5. In contrast, we give

a graph G with ∆ = 3, mad(G) = 36
13 , and χi(G) = 6.

1. Introduction

An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two

vertices with a common neighbor receive distinct colors. The injective chromatic number, χi(G), is

the minimum number of colors needed for an injective coloring. Injective colorings were introduced

by Hahn et al. in [5], and in that paper, the authors showed applications of the injective chromatic

number of the hypercube in the theory of error-correcting codes.

Define the neighboring graph G(2) by V (G(2)) = V (G) and E(G(2)) = {uv : u and v have a common

neighbor in G}. Note that χi(G) = χ(G(2)) ≤ χ(G2). The chromatic number of G2 has important

applications in Steganography (see [4]).

It is easy to see that χi(G) ≥ ∆(G), where ∆(G) is the maximum degree of G (when the context

is clear, we simply write ∆). People are interested in the graphs with relatively small injective

chromatic number, and one natural choice of such graphs are planar graphs, or more general, the

sparse graphs, see [5, 6, 7]. Let mad(G) denote the maximum average degree (over all subgraphs)

of G. Note that for planar graph G, mad(G) < 2g
g−2 , where g is the girth of G.

In [2], Doyon, Hahn, and Raspaud showed that for a graph G with maximum degree ∆, the

following three results hold: if mad(G) < 14
5 , then χi(G) ≤ ∆ + 3; if mad(G) < 3, then χi(G) ≤

∆ + 4; and if mad(G) < 10
3 , then χi(G) ≤ ∆ + 8.

In [1] the present authors improved some bounds given in [2] and [7] in certain cases; specifically,

we studied sufficient conditions to imply χi(G) = ∆ and χi(G) ≤ ∆ + 1. In the current paper, we

study conditions such that χi(G) ≤ ∆ + 2. Our main result is the following theorem.

Theorem 1. Let G be a graph with maximum degree ∆ ≥ 4. If mad(G) < 14
5 , then χi(G) ≤ ∆+2 .

Note that for ∆ = 3, we have graphs with χi(G) = 6, even with mad(G) = 36
13 .
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Example 1. Let G be the incidence graph of the Fano Plane. Observe that G is 3-regular, bipartite,

and vertex-transitive. Consider H = G− v, where v is an arbitrary vertex. To see that χi(H) = 6,

we only need to note that the vertices in the part of size 6 form a clique in H(2), but the vertices in

the part of size 7 do not.

We will show that one cannot construct subcubic graphs with χi(G) = 6 and mad(G) < 36
13 .

Theorem 2. If ∆ =3 and mad(G) < 36
13 , then χi(G) ≤ 5.

Hahn, Raspaud, Wang [6] conjectured that every planar graph G with maximum degree ∆ has

χi(G) ≤ $3∆
2 %. For ∆ = 3, the conjecture says that χi(G) ≤ 5. Thus Theorem 2 says that the

conjecture is true when the girth of G is at least 8.

The rest of the paper is organized as follows: in Section 2, we introduce the reducible config-

urations, and as a warmup, we give the proof of Theorem 2; in Section 3, we finish the proof of

Theorem 1 by dealing with the cases when ∆ ≥ 6, ∆ = 4, and ∆ = 5.

2. Reducible Configurations and Proof of Theorem 2

Before we start, we introduce some notation. A k-vertex is a vertex of degree k; a k+- and a

k−-vertex have degree at least and at most k, respectively. A thread is a path with 2-vertices in

its interior and 3+-vertices as its endpoints. A k-thread has k interior 2-vertices. If a 3+-vertex u

is the endpoint of a thread containing a 2-vertex v, then we say that v is a nearby vertex of u and

vice versa. We write N2[u] to denote the vertex set consisting of u and its adjacent 2-vertices.

All of our proofs rely on the techniques of reducibility and discharging. We start with a minimal

counterexample to the theorem we are proving, and we show that the graph cannot contain certain

subgraphs; we call such a subgraph a reducible configuration. In the discharging phase, we use a

counting argument to show that every supposed minimal counterexample must contain a reducible

configuration; this yields a contradiction. All of our proofs yield simple algorithms that produce

the desired coloring and run in linear time.

Proof of Theorem 2: Assume that G is a minimal counterexample to Theorem 2, that is, G has the

specified mad(G), maximum degree ∆, and χi(G) > ∆ + 2. Then the reducible configurations are

as follows.

(RC1) G contains no 1-vertices.

(RC2) G contains no 2-threads.

(RC3) G contains no 3-vertex adjacent to two 2-vertices.

(RC4) G contains no adjacent 3-vertices that are each adjacent to a 2-vertex.

Now we show that (RC1) - (RC4) are reducible configurations. In later proofs, when ∆ > 3, we

will often use the same reducible configurations; so here, we give proofs that do not use the fact

∆ = 3, but instead simply assume that every vertex has a list of available colors of size ∆ + 2.

(RC1): Let v be a 1-vertex. By the minimality of G, we can color G− v (from its lists). Since v

has at most ∆− 1 colors forbidden, we can extend the coloring to G.

(RC2): Let u and v be adjacent 2-vertices. By the minimality of G, we can color G \ {u, v}.

Again, we can extend the coloring to G, since each of u and v has at most (∆ − 1) + 1 colors

forbidden.
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(RC3): Let u be a 3-vertex adjacent to 2-vertices v and w, and let S = {u, v,w}. By minimality,

we can color G \ S. Note that u has at most (∆ − 1) + 1 + 1 colors forbidden and v and w each

have at most (∆− 1) + 1 colors forbidden. Thus, we can extend the coloring to G.

(RC4): Let u1 and u2 be adjacent 3-vertices and v1 and v2 be 2-vertices such that vi is adjacent

to ui, and let S = {u1, u2, v1, v2}. By the minimality of G, we can color G\S. Note that u1 and u2

each have at most (∆− 1) + 1 + 1 colors forbidden, since the vis are uncolored. After coloring the

uis, each vi has at most (∆− 1) + 1 + 1 colors forbidden. Hence, we can extend the coloring to G.

We use the initial charge µ(v) = d(v) and the following two discharging rules:

(R1) Each 3-vertex gives charge 3
13 to each adjacent 2-vertex.

(R2) Each 3-vertex gives charge 1
13 to each distance-2 2-vertex.

Now we verify that after discharging each vertex has charge at least 36
13 .

Recall that G contains no 1-vertex and observe that (RC2) and (RC3) imply that all vertices

that are distance at most two from a 2-vertex must be 3-vertices. Thus, for every 2-vertex v, we

have µ∗(v) = 2 + 2( 3
13 ) + 4( 1

13 ) = 36
13 .

Now we consider 3-vertices. Note that (RC2), (RC3), and (RC4) together imply that a 3-vertex

v cannot have 2-vertices at both distance 1 and 2; further, either v has no adjacent 2-vertices and

at most three distance-2 2-vertices or else v has at most one adjacent 2-vertex and no distance-2

2-vertices. Hence, we have either µ∗(v) ≥ 3 − 3( 1
13 ) = 36

13 or µ∗(v) ≥ 3 − 3
13 = 36

13 .

Thus, the average degree is at least 36
13 . This contradiction completes the proof. !

3. Proof of Theorem 1

To prove Theorem 1, we consider separately the cases ∆ = 4, ∆ = 5, and ∆ ≥ 6. The proof

when ∆ ≥ 6 is similar to the proof of Theorem 2, so we consider it first.

Lemma 3. If ∆ ≥ 6 and mad(G) < 14
5 , then χi(G) ≤ ∆ +2 .

Proof. Below are some reducible configurations.

(RC1) G contains no 1-vertices.

(RC2) G contains no 2-threads.

(RC3) G contains no 3-vertex adjacent to two or three 2-vertices.

(RC4) G contains no 3-vertex adjacent to a 2-vertex and neighbors x and y with d(x)+d(y) ≤ ∆+2.

(RC5) G contains no 4-vertex adjacent to four 2-vertices such that one of these 2-vertices has other

neighbor with degree less than ∆.

We use the initial charge µ(v) = d(v) and the following discharging rules.

(R1) each 3+-vertex gives 2
5 to each adjacent 2-vertex.

(R2) each vertex with degree at least $∆+3
2 % gives charge 2

5 to each adjacent 3-vertex or 4-vertex.

(R3) Suppose that vertex v is adjacent to k 2-vertices and, after applying rules (R1) and (R2),

vertex v has charge 14
5 + l (where l > 0). For each adjacent 2-vertex u, vertex v gives charge

l
k to the other neighbor of u.
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First observe that after applying rules (R1) and (R2), a vertex v has excess charge at least

d(v) − 2
5d(v) − 14

5 ; so each vertex u that receives charge from a vertex v by (R3) receives (from v)

a charge of at least 3
5 − 14

5d(v) .

Now we verify that all vertices have charge at least 14
5 .

2-vertex: µ∗(v) ≥ 2 + 2(2
5 ) = 14

5 .

3-vertex: Note that by (RC3) vertex v is adjacent to at most one 2-vertex. If v is adjacent to

zero 2-vertices, then µ∗(v) = µ(v) = 3. If v is adjacent to one 2-vertex, then by (RC4) v also has

some neighbor with degree at least $∆+3
2 %. So by rule (R2), µ∗(v) ≥ 3 − 2

5 + 2
5 = 3.

4-vertex: If v is adjacent to at most three 2-vertices, then µ∗(v) ≥ 4− 3(2
5 ) = 14

5 . If v is adjacent

to four 2-vertices, then by (RC5), the other neighbor of each adjacent 2-vertex must be a ∆-vertex.

Hence, µ∗(v) ≥ 4 − 4(2
5 ) + 4(3

5 − 14
5(6)) > 14

5 .

5+-vertex: µ∗(v) ≥ d(v) − 2
5d(v) = 3

5d(v) ≥ 3. !

Now we consider the cases when ∆ ∈ {4, 5}. We will need the following two results in our proofs.

Lemma A (Vizing [8]). For a connected graph G, let L be a list assignment such that |L(v)| ≥ d(v)

for all v. (a) If |L(y)| > d(y) for some vertex y, then G is L-colorable. (b) If G is 2-connected and

the lists are not all identical, then G is L-colorable.

A graph is degree-choosable if it can be colored from its list assignment L whenever |L(v)| = d(v)

for every vertex v.

Theorem B (Erdős-Rubin-Taylor [3]). A graph G fails to be degree-choosable if and only if every

block is a complete graph or an odd cycle.

Lemma 4. If ∆(G) = 4 and mad(G) < 14
5 , then χi(G) ≤ 6.

Proof. Suppose the lemma is false; let G be a minimal counterexample. Below we list some reducible

configurations.

(RC1) G contains no 1-vertices.

(RC2) G contains no 2-threads.

(RC3) G contains no 3-vertex adjacent to two or three 2-vertices.

(RC4) G contains no 3-vertex adjacent to one 2-vertex and two 3-vertices.

(RC5) G contains no adjacent 3-vertices with each 3-vertex also adjacent to a (possibly distinct)

2-vertex.

In the first discharging phase, we apply the following two discharging rules:

(R1.1) Every 3+-vertex gives 2
5 to each adjacent 2-vertex.

(R1.2) If u is a 3-vertex adjacent to a 4-vertex v and a 2-vertex, then v gives 1
5 to u.

We consider the charges after the first discharging phase.

2-vertex: µ∗(v) = 2 + 2(2
5 ) = 14

5 .

3-vertex: If v is adjacent to a 2-vertex, then by (RC4) v is also adjacent to a 4-vertex, so

µ∗(v) ≥ 3 − 2
5 + 1

5 = 14
5 . Otherwise, µ∗(v) = µ(v) = 3.

4-vertex: µ∗(v) ≥ 4 − 4(2
5 ) = 12

5 .
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Note that every 2-vertex and 3-vertex has charge at least 14
5 , but 4-vertices can have insufficient

charge. We now construct an auxilliary graph H. Graph H will not contain all the vertices of G,

but H will contain every vertex of G that has charge less than 14
5 after the first discharging phase;

H will also contain some of the other vertices. If H is acyclic, then we will show how to complete

the discharging argument. If we cannot complete the discharging argument, then we will use H to

show that G contains a reducible configuration. More specifically, we construct H so that every

cycle in H corresponds to an even cycle in G in which each vertex v satisfies dG(2)(v) ≤ 6; we show

if we cannot complete the discharging argument, then one of these even cycles in G is contained in

a reducible configuration.

For convenience, we introduce a subgraph Ĝ(2) of G(2). We form Ĝ(2) from G(2) by deleting all

2-vertices of G that have degree at most 5 in G(2); we can greedily color these vertices after all

others. Hence, it suffices to properly color Ĝ(2). We denote the degree of a vertex v in Ĝ(2) by

d̂(v). We construct H by the three following rules. We apply rule 3 after applying rules 1 and 2

everywhere that they are applicable.

(H1) If u is a 2-vertex adjacent to vertices v and w, then v,w ∈ V (H) and vw ∈ E(H).

(H2) If u is a 3-vertex adjacent to a 3-vertex v and also adjacent to a 2-vertex, then u, v ∈ V (H)

and uv ∈ E(H).

(H3) If v ∈ V (H) and d̂(v) ≥ 7, then for each vertex u adjacent to v in H we create a new vertex

vu in H that is adjacent only to vertex u; finally, we delete vertex v. (We will show that

this rule can only apply when dG(v) = 4 and dH(v) = 2.)

Now we have a second discharging phase, with the following three rules:

(R2.1) Each vertex of degree 1 in H gives a charge of 1
5 to the bank. (So, if v was replaced by two

vertices, vu and vw, by rule (H3), then v gives a charge of 2
5 to the bank.)

(R2.2) If a vertex v is in H and in G vertex v is adjacent to three vertices of degree 2 and a vertex

of degree 3, then the bank gives v a charge of 1
5 .

(R2.3) If a vertex v is in H and in G vertex v is adjacent to four vertices of degree 2, then the

bank gives v a charge of 2
5 .

Let V2,2,2,3 denote the number of 4-vertices in G that are adjacent to three vertices of degree

2 and one vertex of degree 3; similarly, let V2,2,2,2 denote the number of 4-vertices in G that are

adjacent to four vertices of degree 2. Let Leaves denote the number of leaves in H. At the end of

the second discharging phase, the bank has a charge equal to 1
5(Leaves−V2,2,2,3 − 2V2,2,2,2); we call

this charge the surplus. We will show that if the surplus is negative, then G contains a reducible

configuration and if the surplus is nonnegative, then every vertex of G has charge at least 14
5 (which

contradicts mad(G) < 14
5 ).

First, we assume the surplus is negative. Note that if the surplus is negative, then it must be

negative when restricted to some component J of H. Observe that each vertex counted by V2,2,2,3

has degree 3 in H and each counted by V2,2,2,2 has degree 4 in H. Thus, if the surplus is negative

when restricted to J , then J has average degree greater than 2. Hence, J contains a cycle C and

at least one vertex u counted by either V2,2,2,3 or V2,2,2,2. Recall that N2[u] is the set consisting

of vertex u and all adjacent 2-vertices. By the minimality of G, we have an injective 6-coloring
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of G \ N2[u] (note that (G \ N2[u])(2) = G(2) \ N2[u]); equivalently, this is a proper coloring of

G(2) \ N2[u].

Let C ′ be the shortest cycle in G that contains all the vertices of V (C) in the order in which

they appear in C; thus, V (C ′) contains V (C), as well as some additional 2-vertices and possibly

3-vertices. Let K be the subgraph of G consisting of C ′ and a shortest path from C ′ to u (including

u); if u lies on C ′, then we also include in K a 2-vertex that is adjacent to u, but that is not

responsible for any edge of C. Our proper coloring of G(2) \ N2[u] can naturally be restricted to

a proper coloring of Ĝ(2) \ N2[u]. We will first modify the coloring of Ĝ(2) \ N2[u] to get a proper

coloring of Ĝ(2) − V (K), then show how to extend this coloring to Ĝ(2).

If u lies on C ′, then at most one vertex w of N2[u] is not in K. Beginning with our coloring

of Ĝ(2) \ N2[u], we greedily color w, then uncolor the vertices of K; this yields a coloring of

G(2) − V (K). We now assume that u does not lie on C ′. Observe that C ′ is an even cycle, and

hence V (C ′) forms two disjoint cycles in G(2); the key observation is that because of (RC5), if C ′

contains an edge created by (H2), then C ′ contains two successive such edges, yet C ′ must not

contain three successive such edges, since this would force an instance of (RC4).

Let x denote the vertex of degree 3 in K. We call the component of K(2) that includes x the

first component and we call the other component of K(2) the second component. Note that the

path from x to u in G is of even length; this is true for the same reason that C ′ is an even cycle.

Hence, vertex u is in the first component and the vertices in N2[u]−u are in the second component.

Starting from our coloring of Ĝ(2) \ N2[u], we uncolor all vertices of the second component. We

now greedily color the uncolored vertices of the second component that are not on C ′ in order of

decreasing distance from C ′ (as we show in the next paragraph, this uses at most 6 colors). Finally,

we uncolor the vertices of K in the first component; this yields a coloring of G(2) − V (K).

Let L(v) denote the list of remaining available colors at each vertex v. Rule (H3) implies that

d̂(v) ≤ 6 for each v ∈ V (H). Since each vertex v of K has d̂(v) ≤ 6 and we are allowed 6 colors

for our injective coloring of G, we thus have |L(v)| ≥ dK(2)(v) for each vertex v. By Lemma A and

Theorem B, to complete the coloring of Ĝ(2), it suffices to show that each component of K(2) either

contains a vertex w with |L(w)| > dK(2)(w) or contains a block that is neither a clique nor an odd

cycle.

Since u is counted by either V2,2,2,3 or V2,2,2,2, we have d̂(u) < 6; hence, we conclude dK(2)(u) <

|L(u)|. Thus, we can extend the coloring of Ĝ(2)−V (K) to the first component. Clearly, the second

component contains a cycle E. Note that the two neighbors of x that lie on E (and are adjacent

to each other in E) also have a common neighbor in K(2); hence, the second component contains a

block that is not a cycle or a clique. Thus, we can extend the coloring of Ĝ(2) −V (K) to the second

component. Hence, we have shown that if the surplus is negative, then Ĝ(2) contains a reducible

configuration.

We now show that if the surplus is nonnegative, then the average degree in G is at least 14
5 . We

must verify that after each leaf in H gives a charge of 1
5 to the bank and each vertex in H counted

by V2,2,2,3 or V2,2,2,2 receives charge from the bank, every vertex has charge at least 14
5 . Note that if

dG(v) ≤ 2, then v /∈ H. To denote the charge at each vertex v after the second discharging phase,

we write µ∗∗(v).
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First we consider a vertex v ∈ V (H) such that dG(v) = 3. Suppose that dH(v) = 1. Recall that

each 2-vertex that is adjacent to v in G corresponds to an edge incident to v in H. Since dH(v) = 1,

v is adjacent in G to at most one 2-vertex. Further, if v is adjacent to a 2-vertex, then v is not

adjacent to a 3-vertex (since this would imply dH(v) ≥ 2). Hence, either v is adjacent in G to one

2-vertex and two 4-vertices or v is not adjacent in G to any 2-vertices. In each case, µ∗(v) = 3, so

v can give charge 1
5 to the bank, ending with charge µ∗∗(v) = 3 − 1

5 = 14
5 .

Now suppose that dH(v) ≥ 2. Either v is adjacent in G to a 2-vertex, a 3-vertex, and a 4-

vertex, or v is adjacent in G to at least two 3-vertices and to no 2-vertices. In the first case

µ∗(v) = 3 − 1(2
5 ) + 1(1

5 ) = 14
5 , and in the second case µ∗(v) = µ(v) = 3. Note further that in the

first case, dG(2)(v) ≤ 6 and in the second case, dG(2)(v) ≤ 7. However, in the second case each

3-vertex that is adjacent to v in H is adjacent to a 2-vertex in G that is deleted in Ĝ; so we have

d̂(v) ≤ 5. Hence, in each case d̂(v) ≤ 6, so rule (H3) never applies to a vertex v ∈ V (H) such that

dG(v) = 3. Thus, in both cases we have µ∗∗(v) = µ∗(v) ≥ 14
5 .

Now we consider a vertex v ∈ V (H) such that dG(v) = 4. If vertex v is adjacent in G to at least

three 2-vertices, then d̂(v) ≤ 6, so rule (H3) does not apply to v. Hence, if v is counted by V2,2,2,3,

then µ∗(v) ≥ 4−3(2
5 )−1(1

5 ) = 13
5 and µ∗∗(v) = µ∗(v)+ 1

5 = 14
5 ; similarly, if v is counted by V2,2,2,2,

then µ∗(v) = 4 − 4(2
5 ) = 12

5 and µ∗∗(v) = µ∗(v) + 2
5 = 14

5 . If during the initial discharging phase,

v only gave charge to two 2-vertices (and no 3-vertices), then v has sufficient charge to give to the

bank if it is split by rule (H3): µ∗∗(v) ≥ µ∗(v)− 2(1
5 ) = 4− 2(2

5 )− 2(1
5 ) = 14

5 . Hence, we need only

consider the case when during the first discharging phase v gave charge to at most two 2-vertices

and at least one 3-vertex. We examine three subcases.

If v is adjacent in G to two 2-vertices and two 3-vertices, then d̂(v) ≤ 6, so rule (H3) does not

apply to v; hence µ∗∗(v) = µ∗(v) = 4 − 2(2
5 ) − 2(1

5 ) = 14
5 . If v is adjacent to at most one 2-vertex,

then after the initial discharging phase, µ∗(v) ≥ 4 − 2
5 − 3(1

5 ) = 3, so µ∗∗(v) = µ∗(v) − 1
5 = 14

5 .

Finally, suppose that v gave charge to two 2-vertices and one 3-vertex. If the final neighbor of

v is a 4-vertex, then dG(2)(v) = 7. However, the 3-vertex adjacent to v is also adjacent to a 2-

vertex u. Because dG(2)(u) ≤ 5, we have d̂(v) ≤ 6, so rule (H3) does not apply to v. Hence

µ∗∗(v) = µ∗(v) = 4 − 2(2
5 ) − 1(1

5 ) = 3. !

The proof of Lemma 5 is similar to the proof of Lemma 4, but slightly more complicated. The

additional obstacle we must address in the current proof is verifying that each 5-vertex has sufficient

charge. The additional asset we have is that we are allowed to use 7 colors (rather than the 6 colors

allowed in Lemma 4).

Lemma 5. If ∆(G) = 5 and mad(G) < 14
5 , then χi(G) ≤ 7.

Proof. Suppose the lemma is false; let G be a minimal counterexample. Below are some reducible

configurations.

(RC1) G contains no 1-vertices.

(RC2) G contains no 2-threads.

(RC3) G contains no 3-vertex adjacent to two or three 2-vertices.

(RC4) G contains no 3-vertex adjacent to one 2-vertex and two other vertices u and v with d(u)+

d(v) ≤ 7.

In the first discharging phase, we apply the following three discharging rules:
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(R1.1) Every 3+-vertex gives 2
5 to each adjacent 2-vertex.

(R1.2) If u is a 3-vertex adjacent to two 4-vertices and a 2-vertex, then each adjacent 4-vertex

gives 1
5 to u.

(R1.3) Every 5-vertex gives 2
5 to each adjacent 3-vertex that is adjacent to a 2-vertex and gives 1

5

to each adjacent 4-vertex.

We consider the charges after the first discharging phase.

2-vertex: µ∗(v) = 2 + 2(2
5 ) = 14

5 .

3-vertex: If v is adjacent to a 2-vertex, then by (RC4) v is either adjacent to two 4-vertices

or adjacent to a 5-vertex. In the first case, µ∗(v) = 3 − 2
5 + 2(1

5 ) = 3. In the second case,

µ∗(v) = 3 − 2
5 + 2

5 = 3. Otherwise, µ∗(v) = µ(v) = 3.

4-vertex: µ∗(v) ≥ 4 − 4(2
5 ) = 12

5 .

5-vertex: µ∗(v) ≥ 5 − 5(2
5 ) = 3.

For convenience, we introduce a subgraph G̃(2) of G(2). We form G̃(2) from G(2) by deleting all

vertices of G that have degree at most 6 in G(2); we can greedily color these vertices after all others.

We denote the degree of a vertex v in G̃(2) by d̃(v). (Note the subtle difference from the proof of

Lemma 4: to form Ĝ(2) we only deleted 2-vertices, but now we delete all vertices with d̃(v) ≤ 6.

This change is necessary to accomodate the 5-vertices.) Hence, it suffices to properly color G̃(2).

Again we construct an auxiliary graph H, to help finish the discharging argument. We construct

H by the two following rules:

(H1) If u is a 2-vertex adjacent to a 4-vertex v and also adjacent to w, then v,w ∈ V (H) and

vw ∈ E(H).

(H2) If v ∈ V (H) and d̃(v) ≥ 8, then we split v into multiple copies in H, as follows. For each

edge e incident to v in H, we create a new vertex ve that is incident only to edge e, then

we delete the original copy of v in H.

Now we have a second discharging phase, with the following four rules:

(R2.1) Each vertex of degree 1 in H gives a charge of 1
5 to the bank. (So, if v was split into k

vertices by rule (H2), then v gives a charge of k
5 to the bank.)

(R2.2) If a vertex v is in H and in G vertex v is adjacent to three vertices of degree 2 and a vertex

of degree 3, then the bank gives v a charge of 1
5 .

(R2.3) If a vertex v ∈ V (H) and in G vertex v is adjacent to four vertices of degree 2, then the

bank gives v a charge of 2
5 .

(R2.4) If a 4-vertex v has charge at least 3 after applying rules (R2.1), (R2.2), (R2.3), then v sends

charge 1
15 to each 5-vertex v at distance 2 that has a common neighbor w with u such that

dG(w) = 2.

Let V2,2,2,3 denote the number of 4-vertices in G that are adjacent to three vertices of degree

2 and one vertex of degree 3; similarly, let V2,2,2,2 denote the number of 4-vertices in G that are

adjacent to four vertices of degree 2. Let Leaves denote the number of leaves in H. At the end of

the second discharging phase, the bank has a surplus equal to 1
5(Leaves−V2,2,2,3−2V2,2,2,2). We will

show that if the surplus is negative, then G contains a reducible configuration and if the surplus is

nonnegative, then every vertex of G has charge at least 14
5 (which contradicts mad(G) < 14

5 ).
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First, we assume the surplus is negative. Note that if the surplus is negative, then it must be

negative when restricted to some component J of H. Observe that each vertex counted by V2,2,2,3

has degree 3 in H and each counted by V2,2,2,2 has degree 4 in H. Thus, if the surplus is negative

when restricted to J , then J has average degree greater than 2. Hence, J contains a cycle C and

at least one vertex u counted by either V2,2,2,3 or V2,2,2,2. Recall that N2[u] is the set consisting

of vertex u and all adjacent 2-vertices. By the minimality of G, we have an injective 7-coloring

of G \ N2[u] (note that (G \ N2[u])(2) = G(2) \ N2[u]); equivalently, this is a proper coloring of

G(2) \ N2[u].

Let C ′ be the shortest cycle in G that contains all the vertices of V (C) in the order in which

they appear in C; thus, V (C ′) contains V (C), as well as some additional 2-vertices. Let K be the

subgraph of G consisting of C ′ and a shortest path from C ′ to u (including u); if u lies on C ′, then

we also include in K a 2-vertex that is adjacent to u, but that is not responsible for any edge of C.

Our proper coloring of G(2) \N2[u] can naturally be restricted to a proper coloring of G̃(2) \N2[u].

We will first modify the coloring of G̃(2) \N2[u] to get a proper coloring of G̃(2) −V (K), then show

how to extend this coloring to G̃(2).

If u lies on C ′, then at most one vertex w of N2[u] is not in K. Beginning with our coloring of

G̃(2)\N2[u], we greedily color w, then uncolor the vertices of K; this yields a coloring of G(2)−V (K).

We now assume that u does not lie on C ′. Observe that C ′ is an even cycle, and hence V (C ′)

forms two disjoint cycles in G(2); this observation follows directly from the fact that each edge of

H is constructed by rule (H1).

Let x denote the vertex of degree 3 in K. We call the component of K(2) that includes x the

first component and we call the other component of K(2) the second component. Note that the

path from x to u in G is of even length; this is true for the same reason that C ′ is an even cycle.

Hence, vertex u is in the first component and the vertices in N2[u]−u are in the second component.

Starting from our coloring of G̃(2) \ N2[u], we uncolor all vertices of the second component.

Let L(v) denote the list of remaining available colors at each vertex v. Rule (H2) implies that

d̃(v) ≤ 7 for each v ∈ V (H). Since each vertex v of K has d̃(v) ≤ 7 and we are allowed 7 colors

for our injective coloring of G, we thus have |L(v)| ≥ dK(2)(v) for each vertex v. By Lemma A and

Theorem B, to complete the coloring of G̃(2), it suffices to show that each component of K(2) either

contains a vertex w with |L(w)| > dK(2)(w) or contains a block that is neither a clique nor an odd

cycle.

Since u is counted by either V2,2,2,3 or V2,2,2,2, we have d̃(u) < 7; hence, we conclude dK(2)(u) <

|L(u)|. Thus, we can extend the coloring of G̃(2)−V (K) to the first component. Clearly, the second

component contains a cycle E. Note that the two neighbors of x that lie on E (and are adjacent

to each other in E) also have a common neighbor in K(2); hence, the second component contains a

block that is not a cycle or a clique. Thus, we can extend the coloring of G̃(2) −V (K) to the second

component. Hence, we have shown that if the surplus is negative, then G̃(2) contains a reducible

configuration.

We now show that if the surplus is nonnegative, then the average degree in G is at least 14
5 . We

must verify that after each leaf in H gives a charge of 1
5 to the bank and each vertex in H counted

by V2,2,2,3 or V2,2,2,2 receives charge from the bank, every vertex has charge at least 14
5 . To denote

the charge at each vertex v after the second discharging phase, we write µ∗∗(v).
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First, we consider a vertex v ∈ V (H) such that dG(v) = 3. Note that dH(v) ≤ 1, since dH(v) ≥ 2

would imply that in G vertex v is adjacent to at least two 2-vertices, which contradicts (RC3). So

suppose that dH(v) = 1. Clearly, v is adjacent to a 2-vertex in G. If v is also adjacent to a 5-vertex,

then µ∗(v) ≥ 3 − 2
5 + 2

5 = 3. If v is not adjacent to a 5-vertex, then by (RC3) and (RC4), v must

be adjacent to two 4-vertices; hence, µ∗(v) ≥ 3 − 2
5 + 2(1

5 ) = 3. In each case, v has charge at least

3 after the initial discharging phase, so v can give charge 1
5 to the bank.

Now, we consider a vertex v ∈ V (H) such that dG(v) = 4. We must verify that for each such

vertex, either d̃(v) ≤ 6 or v is able to give sufficient charge to the bank after it is split by rule (H2).

If in G vertex v is adjacent to at least three 2-vertices, then d̃(v) ≤ 7. If in the initial discharging

phase, v has only given charge to two 2-vertices (and no 3-vertices), then v has sufficient charge

to give to the bank if it is split by rule (H2). Hence, we need only consider the case when during

the first discharging phase v has given charge to at most two 2-vertices and at least one 3-vertex.

Note, as follows, that rule (R2.4) will never cause the charge of a 4-vertex v to drop below 14
5 . If

a 4-vertex gives charge by rule (R2.4) to at most three 5-vertices, then µ∗∗(v) ≥ 3 − 3( 1
15 ) = 14

5 .

However, if v gives charge by rule (R2.4) to four 5-vertices, then µ∗∗(v) = µ∗(v) − 4( 1
15 ) + 2

5 > 14
5 .

Hence, in what follows, we do not consider rule (R2.4). We examine three subcases.

If v is adjacent in G to two 2-vertices and two 3-vertices, then d̃(v) ≤ 6. If v is adjacent to at

most one 2-vertex, then after the initial discharging phase, v has charge at least 4 − 2
5 − 3(1

5 ) = 3,

so v is able to give charge 1
5 to the bank. Finally, suppose that v has given charge to two 2-vertices

and one 3-vertex. Observe that the 3-vertex adjacent to v is also adjacent to a 2-vertex u. Because

dG(2)(u) ≤ 6, we see that d̃(v) ≤ 7.

Finally, we consider a vertex v ∈ H such that dG(v) = 5. If v is adjacent in G to at most

three 2-vertices and at most four 3−-vertices, then µ∗∗(v) ≥ µ∗(v) − 3(1
5 ) ≥ 5 − 4(2

5 ) − 3(1
5 ) = 14

5 .

Suppose instead that v is adjacent to five 3−-vertices. If v is adjacent to at least three 2-vertices,

then d̃(v) ≤ 7, so v is not split by rule (H2). Thus, µ∗∗(v) ≥ 5 − 5(2
5 ) = 3. If v is adjacent to five

3−-vertices and at least three of them are 3-vertices, then we have the following analysis. If v is

not split by rule (H2), then µ∗∗(v) ≥ 5− 5(2
5 ) = 3; hence, we assume that v is split by (H2), which

implies that d̃(v) ≥ 8. This inequality implies that at least three 3-vertices that are adjacent to v

are not adjacent to 2-vertices (if such a 3-vertex is adjacent to a 2-vertex u, then dG(2)(u) ≤ 6, so u

does not contribute to d̃(v)). Hence, these 3-vertices do not receive charge from v, so we conclude

that µ∗∗(v) ≥ 5 − 2(2
5 ) − 2(1

5 ) = 19
5 > 14

5 .

So v must be adjacent to exactly four 3−-vertices, and all of these 3−-vertices are 2-vertices.

Consider dH(v) before we apply rule (H2). Each edge incident in H to v corresponds to a 2-vertex

in G that is adjacent to v and is also adjacent to a 4-vertex u. If at least two of these 4-vertices

have dG(2)(u) ≤ 6, then d̃(v) ≤ 6, and v is not split by (H2). Suppose one such 4-vertex u has

dG(2)(u) ≥ 7. Either u is adjacent to a most two 2-vertices, or u is adjacent to three 2-vertices and

one 5-vertex; in both cases, µ∗(u) ≥ 3, so u gives charge 1
15 to v. Hence, if at least three of these

4-verts have dG(2) ≥ 7, then v gets charge 1
15 from each, so µ∗∗(v) ≥ 5−5(2

5 )−2(1
5 )+3 1

15 = 14
5 . !

By combining Lemmas 3, 4, and 5, we prove Theorem 1.

Although we have stated our results only for injective coloring, all of our proofs yield the same

bounds for injective list coloring (which is defined analogously).
10



References

[1] D.W. Cranston, S.-J. Kim, and G. Yu, Injective colorings of sparse graphs, submitted.

[2] A. Doyon, G. Hahn, and A. Raspaud, On the injective chromatic number of sparse graphs, preprint 2005.

[3] P. Erdős, A. Rubin, and H. Taylor, Choosability in graphs, Congr. Num. 26 (1979), pp. 125–157.
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